3.3.41 \(\int \frac {1}{(1+x^2) (1+x^2+x^4)^{3/2}} \, dx\) [241]

3.3.41.1 Optimal result
3.3.41.2 Mathematica [C] (verified)
3.3.41.3 Rubi [A] (verified)
3.3.41.4 Maple [C] (verified)
3.3.41.5 Fricas [A] (verification not implemented)
3.3.41.6 Sympy [F]
3.3.41.7 Maxima [F]
3.3.41.8 Giac [F]
3.3.41.9 Mupad [F(-1)]

3.3.41.1 Optimal result

Integrand size = 20, antiderivative size = 166 \[ \int \frac {1}{\left (1+x^2\right ) \left (1+x^2+x^4\right )^{3/2}} \, dx=-\frac {x \left (1+2 x^2\right )}{3 \sqrt {1+x^2+x^4}}+\frac {2 x \sqrt {1+x^2+x^4}}{3 \left (1+x^2\right )}+\frac {1}{2} \arctan \left (\frac {x}{\sqrt {1+x^2+x^4}}\right )-\frac {2 \left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{3 \sqrt {1+x^2+x^4}}+\frac {3 \left (1+x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1+x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{4 \sqrt {1+x^2+x^4}} \]

output
1/2*arctan(x/(x^4+x^2+1)^(1/2))-1/3*x*(2*x^2+1)/(x^4+x^2+1)^(1/2)+2/3*x*(x 
^4+x^2+1)^(1/2)/(x^2+1)-2/3*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*arcta 
n(x))*EllipticE(sin(2*arctan(x)),1/2)*((x^4+x^2+1)/(x^2+1)^2)^(1/2)/(x^4+x 
^2+1)^(1/2)+3/4*(x^2+1)*(cos(2*arctan(x))^2)^(1/2)/cos(2*arctan(x))*Ellipt 
icF(sin(2*arctan(x)),1/2)*((x^4+x^2+1)/(x^2+1)^2)^(1/2)/(x^4+x^2+1)^(1/2)
 
3.3.41.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.16 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.23 \[ \int \frac {1}{\left (1+x^2\right ) \left (1+x^2+x^4\right )^{3/2}} \, dx=\frac {-x-2 x^3+2 \sqrt [3]{-1} \sqrt {1+\sqrt [3]{-1} x^2} \sqrt {1-(-1)^{2/3} x^2} E\left (i \text {arcsinh}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )+\sqrt [3]{-1} \left (-2+\sqrt [3]{-1}\right ) \sqrt {1+\sqrt [3]{-1} x^2} \sqrt {1-(-1)^{2/3} x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left ((-1)^{5/6} x\right ),(-1)^{2/3}\right )+3 (-1)^{2/3} \sqrt {1+\sqrt [3]{-1} x^2} \sqrt {1-(-1)^{2/3} x^2} \operatorname {EllipticPi}\left (\sqrt [3]{-1},i \text {arcsinh}\left ((-1)^{5/6} x\right ),(-1)^{2/3}\right )}{3 \sqrt {1+x^2+x^4}} \]

input
Integrate[1/((1 + x^2)*(1 + x^2 + x^4)^(3/2)),x]
 
output
(-x - 2*x^3 + 2*(-1)^(1/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^ 
2]*EllipticE[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)] + (-1)^(1/3)*(-2 + (-1)^ 
(1/3))*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^2]*EllipticF[I*ArcSi 
nh[(-1)^(5/6)*x], (-1)^(2/3)] + 3*(-1)^(2/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt 
[1 - (-1)^(2/3)*x^2]*EllipticPi[(-1)^(1/3), I*ArcSinh[(-1)^(5/6)*x], (-1)^ 
(2/3)])/(3*Sqrt[1 + x^2 + x^4])
 
3.3.41.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.31, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {1545, 25, 1439, 1511, 1416, 1509, 1534, 1416, 2212, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (x^2+1\right ) \left (x^4+x^2+1\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1545

\(\displaystyle \int -\frac {x^2}{\left (x^4+x^2+1\right )^{3/2}}dx+\int \frac {1}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \frac {1}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx-\int \frac {x^2}{\left (x^4+x^2+1\right )^{3/2}}dx\)

\(\Big \downarrow \) 1439

\(\displaystyle \int \frac {1}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx+\frac {1}{3} \int \frac {2 x^2+1}{\sqrt {x^4+x^2+1}}dx-\frac {x \left (2 x^2+1\right )}{3 \sqrt {x^4+x^2+1}}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {1}{3} \left (3 \int \frac {1}{\sqrt {x^4+x^2+1}}dx-2 \int \frac {1-x^2}{\sqrt {x^4+x^2+1}}dx\right )+\int \frac {1}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx-\frac {x \left (2 x^2+1\right )}{3 \sqrt {x^4+x^2+1}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {1}{3} \left (\frac {3 \left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{2 \sqrt {x^4+x^2+1}}-2 \int \frac {1-x^2}{\sqrt {x^4+x^2+1}}dx\right )+\int \frac {1}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx-\frac {x \left (2 x^2+1\right )}{3 \sqrt {x^4+x^2+1}}\)

\(\Big \downarrow \) 1509

\(\displaystyle \int \frac {1}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx+\frac {1}{3} \left (\frac {3 \left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{2 \sqrt {x^4+x^2+1}}-2 \left (\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {x \sqrt {x^4+x^2+1}}{x^2+1}\right )\right )-\frac {x \left (2 x^2+1\right )}{3 \sqrt {x^4+x^2+1}}\)

\(\Big \downarrow \) 1534

\(\displaystyle \frac {1}{2} \int \frac {1}{\sqrt {x^4+x^2+1}}dx+\frac {1}{2} \int \frac {1-x^2}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx+\frac {1}{3} \left (\frac {3 \left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{2 \sqrt {x^4+x^2+1}}-2 \left (\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {x \sqrt {x^4+x^2+1}}{x^2+1}\right )\right )-\frac {x \left (2 x^2+1\right )}{3 \sqrt {x^4+x^2+1}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {1}{2} \int \frac {1-x^2}{\left (x^2+1\right ) \sqrt {x^4+x^2+1}}dx+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{4 \sqrt {x^4+x^2+1}}+\frac {1}{3} \left (\frac {3 \left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{2 \sqrt {x^4+x^2+1}}-2 \left (\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {x \sqrt {x^4+x^2+1}}{x^2+1}\right )\right )-\frac {x \left (2 x^2+1\right )}{3 \sqrt {x^4+x^2+1}}\)

\(\Big \downarrow \) 2212

\(\displaystyle \frac {1}{2} \int \frac {1}{\frac {x^2}{x^4+x^2+1}+1}d\frac {x}{\sqrt {x^4+x^2+1}}+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{4 \sqrt {x^4+x^2+1}}+\frac {1}{3} \left (\frac {3 \left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{2 \sqrt {x^4+x^2+1}}-2 \left (\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {x \sqrt {x^4+x^2+1}}{x^2+1}\right )\right )-\frac {x \left (2 x^2+1\right )}{3 \sqrt {x^4+x^2+1}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{2} \arctan \left (\frac {x}{\sqrt {x^4+x^2+1}}\right )+\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{4 \sqrt {x^4+x^2+1}}+\frac {1}{3} \left (\frac {3 \left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan (x),\frac {1}{4}\right )}{2 \sqrt {x^4+x^2+1}}-2 \left (\frac {\left (x^2+1\right ) \sqrt {\frac {x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \arctan (x)\left |\frac {1}{4}\right .\right )}{\sqrt {x^4+x^2+1}}-\frac {x \sqrt {x^4+x^2+1}}{x^2+1}\right )\right )-\frac {x \left (2 x^2+1\right )}{3 \sqrt {x^4+x^2+1}}\)

input
Int[1/((1 + x^2)*(1 + x^2 + x^4)^(3/2)),x]
 
output
-1/3*(x*(1 + 2*x^2))/Sqrt[1 + x^2 + x^4] + ArcTan[x/Sqrt[1 + x^2 + x^4]]/2 
 + ((1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/4 
])/(4*Sqrt[1 + x^2 + x^4]) + (-2*(-((x*Sqrt[1 + x^2 + x^4])/(1 + x^2)) + ( 
(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/4])/S 
qrt[1 + x^2 + x^4]) + (3*(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*Ellip 
ticF[2*ArcTan[x], 1/4])/(2*Sqrt[1 + x^2 + x^4]))/3
 

3.3.41.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1439
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[d*(d*x)^(m - 1)*(b + 2*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 
1)*(b^2 - 4*a*c))), x] - Simp[d^2/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x)^(m 
- 2)*(b*(m - 1) + 2*c*(m + 4*p + 5)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x 
] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 
1] && LeQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 

rule 1534
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_S 
ymbol] :> Simp[1/(2*d)   Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[1/(2* 
d)   Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; FreeQ 
[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0 
] && EqQ[c*d^2 - a*e^2, 0]
 

rule 1545
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symb 
ol] :> Simp[1/(c*d^2 - b*d*e + a*e^2)   Int[(c*d - b*e - c*e*x^2)*(a + b*x^ 
2 + c*x^4)^p, x], x] + Simp[e^2/(c*d^2 - b*d*e + a*e^2)   Int[(a + b*x^2 + 
c*x^4)^(p + 1)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[p + 1/2, 0] && (EqQ[c* 
d^2 - a*e^2, 0] || NiceSqrtQ[b^2 - 4*a*c])
 

rule 2212
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + 
 (c_.)*(x_)^4]), x_Symbol] :> Simp[A   Subst[Int[1/(d - (b*d - 2*a*e)*x^2), 
 x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B}, x] & 
& EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]
 
3.3.41.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.53 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.98

method result size
risch \(-\frac {x \left (2 x^{2}+1\right )}{3 \sqrt {x^{4}+x^{2}+1}}+\frac {2 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{3 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}-\frac {8 \sqrt {1-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \sqrt {1-\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )-E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )\right )}{3 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {\sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, \Pi \left (\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, x , -\frac {1}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \frac {\sqrt {-\frac {1}{2}-\frac {i \sqrt {3}}{2}}}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, \sqrt {x^{4}+x^{2}+1}}\) \(328\)
default \(-\frac {2 \left (\frac {1}{3} x^{3}+\frac {1}{6} x \right )}{\sqrt {x^{4}+x^{2}+1}}+\frac {2 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{3 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}-\frac {8 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{3 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {8 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{3 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {\sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, \Pi \left (\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, x , -\frac {1}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \frac {\sqrt {-\frac {1}{2}-\frac {i \sqrt {3}}{2}}}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, \sqrt {x^{4}+x^{2}+1}}\) \(398\)
elliptic \(-\frac {2 \left (\frac {1}{3} x^{3}+\frac {1}{6} x \right )}{\sqrt {x^{4}+x^{2}+1}}+\frac {2 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{3 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}}-\frac {8 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, F\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{3 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {8 \sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, E\left (\frac {x \sqrt {-2+2 i \sqrt {3}}}{2}, \frac {\sqrt {-2+2 i \sqrt {3}}}{2}\right )}{3 \sqrt {-2+2 i \sqrt {3}}\, \sqrt {x^{4}+x^{2}+1}\, \left (1+i \sqrt {3}\right )}+\frac {\sqrt {1+\frac {x^{2}}{2}-\frac {i x^{2} \sqrt {3}}{2}}\, \sqrt {1+\frac {x^{2}}{2}+\frac {i x^{2} \sqrt {3}}{2}}\, \Pi \left (\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, x , -\frac {1}{-\frac {1}{2}+\frac {i \sqrt {3}}{2}}, \frac {\sqrt {-\frac {1}{2}-\frac {i \sqrt {3}}{2}}}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-\frac {1}{2}+\frac {i \sqrt {3}}{2}}\, \sqrt {x^{4}+x^{2}+1}}\) \(398\)

input
int(1/(x^2+1)/(x^4+x^2+1)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/3*x*(2*x^2+1)/(x^4+x^2+1)^(1/2)+2/3/(-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2 
*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1/2 
)*EllipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))-8/3/( 
-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^ 
(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1/2)/(1+I*3^(1/2))*(EllipticF(1/2*x*(-2+2*I 
*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))-EllipticE(1/2*x*(-2+2*I*3^(1/2 
))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2)))+1/(-1/2+1/2*I*3^(1/2))^(1/2)*(1+1/2* 
x^2-1/2*I*x^2*3^(1/2))^(1/2)*(1+1/2*x^2+1/2*I*x^2*3^(1/2))^(1/2)/(x^4+x^2+ 
1)^(1/2)*EllipticPi((-1/2+1/2*I*3^(1/2))^(1/2)*x,-1/(-1/2+1/2*I*3^(1/2)),( 
-1/2-1/2*I*3^(1/2))^(1/2)/(-1/2+1/2*I*3^(1/2))^(1/2))
 
3.3.41.5 Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.01 \[ \int \frac {1}{\left (1+x^2\right ) \left (1+x^2+x^4\right )^{3/2}} \, dx=\frac {4 \, \sqrt {2} {\left (x^{4} + x^{2} - \sqrt {-3} {\left (x^{4} + x^{2} + 1\right )} + 1\right )} \sqrt {\sqrt {-3} - 1} E(\arcsin \left (\frac {1}{2} \, \sqrt {2} x \sqrt {\sqrt {-3} - 1}\right )\,|\,\frac {1}{2} \, \sqrt {-3} - \frac {1}{2}) - \sqrt {2} {\left (9 \, x^{4} + 9 \, x^{2} + \sqrt {-3} {\left (x^{4} + x^{2} + 1\right )} + 9\right )} \sqrt {\sqrt {-3} - 1} F(\arcsin \left (\frac {1}{2} \, \sqrt {2} x \sqrt {\sqrt {-3} - 1}\right )\,|\,\frac {1}{2} \, \sqrt {-3} - \frac {1}{2}) + 12 \, {\left (x^{4} + x^{2} + 1\right )} \arctan \left (\frac {x}{\sqrt {x^{4} + x^{2} + 1}}\right ) - 8 \, \sqrt {x^{4} + x^{2} + 1} {\left (2 \, x^{3} + x\right )}}{24 \, {\left (x^{4} + x^{2} + 1\right )}} \]

input
integrate(1/(x^2+1)/(x^4+x^2+1)^(3/2),x, algorithm="fricas")
 
output
1/24*(4*sqrt(2)*(x^4 + x^2 - sqrt(-3)*(x^4 + x^2 + 1) + 1)*sqrt(sqrt(-3) - 
 1)*elliptic_e(arcsin(1/2*sqrt(2)*x*sqrt(sqrt(-3) - 1)), 1/2*sqrt(-3) - 1/ 
2) - sqrt(2)*(9*x^4 + 9*x^2 + sqrt(-3)*(x^4 + x^2 + 1) + 9)*sqrt(sqrt(-3) 
- 1)*elliptic_f(arcsin(1/2*sqrt(2)*x*sqrt(sqrt(-3) - 1)), 1/2*sqrt(-3) - 1 
/2) + 12*(x^4 + x^2 + 1)*arctan(x/sqrt(x^4 + x^2 + 1)) - 8*sqrt(x^4 + x^2 
+ 1)*(2*x^3 + x))/(x^4 + x^2 + 1)
 
3.3.41.6 Sympy [F]

\[ \int \frac {1}{\left (1+x^2\right ) \left (1+x^2+x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (\left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac {3}{2}} \left (x^{2} + 1\right )}\, dx \]

input
integrate(1/(x**2+1)/(x**4+x**2+1)**(3/2),x)
 
output
Integral(1/(((x**2 - x + 1)*(x**2 + x + 1))**(3/2)*(x**2 + 1)), x)
 
3.3.41.7 Maxima [F]

\[ \int \frac {1}{\left (1+x^2\right ) \left (1+x^2+x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (x^{4} + x^{2} + 1\right )}^{\frac {3}{2}} {\left (x^{2} + 1\right )}} \,d x } \]

input
integrate(1/(x^2+1)/(x^4+x^2+1)^(3/2),x, algorithm="maxima")
 
output
integrate(1/((x^4 + x^2 + 1)^(3/2)*(x^2 + 1)), x)
 
3.3.41.8 Giac [F]

\[ \int \frac {1}{\left (1+x^2\right ) \left (1+x^2+x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (x^{4} + x^{2} + 1\right )}^{\frac {3}{2}} {\left (x^{2} + 1\right )}} \,d x } \]

input
integrate(1/(x^2+1)/(x^4+x^2+1)^(3/2),x, algorithm="giac")
 
output
integrate(1/((x^4 + x^2 + 1)^(3/2)*(x^2 + 1)), x)
 
3.3.41.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (1+x^2\right ) \left (1+x^2+x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (x^2+1\right )\,{\left (x^4+x^2+1\right )}^{3/2}} \,d x \]

input
int(1/((x^2 + 1)*(x^2 + x^4 + 1)^(3/2)),x)
 
output
int(1/((x^2 + 1)*(x^2 + x^4 + 1)^(3/2)), x)